A Posteriori Error Bounds for Reduced Basis Approximations of Nonaffine and Nonlinear Parabolic Partial Differential Equations

نویسنده

  • Martin A. Grepl
چکیده

We present a posteriori error bounds for reduced basis approximations of parabolic partial differential equations involving (i) a nonaffine dependence on the parameter and (ii) a nonlinear dependence on the field variable. The method employs the Empirical Interpolation Method in order to construct “affine” coefficient-function approximations of the “nonaffine” (or nonlinear) parametrized functions. Our a posteriori error bounds take both error contributions explicitly into account — the error introduced by the reduced basis approximation and the error induced by the coefficient function interpolation. We show that these bounds are rigorous upper bounds for the approximation error under certain conditions on the function interpolation, thus addressing the demand for certainty of the approximation. As regards efficiency, we develop an efficient offline-online computational procedure for the calculation of the reduced basis approximation and associated error bound. The method is thus ideally suited for the many-query or real-time contexts. We also introduce a new sampling approach to generate the collateral reduced basis space for functions with a nonlinear dependence on the field variable. Numerical results are presented to confirm and test our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certified Reduced Basis Methods for Nonaffine Linear Time–Varying Partial Differential Equations

We present reduced basis approximations and associated a posteriori error bounds for nonaffine linear time-varying parabolic partial differential equations. We employ the Empirical Interpolation Method in order to construct “affine” coefficient-function approximations of the “nonaffine” parametrized functions. To this end, we extend previous work on time-invariant functions to time-varying func...

متن کامل

Reduced-Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis

Thesis Supervisor: Anthony T. Patera Title: Professor of Mechanical Engineering MIT Thesis Supervisor: Liu Gui-Rong Title: Associate Professor of Mechanical Engineering NUS

متن کامل

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then...

متن کامل

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...

متن کامل

A new error bound for Reduced Basis approximation of parabolic partial differential equations

We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant βδ: βδ is bounded from below by unity for the heat equation; βδ grows only linearly in time for non-coercive (asymptotically stable) convection operators. The latter in turn p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010